3.373 \(\int \cot ^6(e+f x) (a+b \tan ^2(e+f x))^p \, dx\)

Optimal. Leaf size=83 \[ -\frac{\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac{b \tan ^2(e+f x)}{a}+1\right )^{-p} F_1\left (-\frac{5}{2};1,-p;-\frac{3}{2};-\tan ^2(e+f x),-\frac{b \tan ^2(e+f x)}{a}\right )}{5 f} \]

[Out]

-(AppellF1[-5/2, 1, -p, -3/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/a)]*Cot[e + f*x]^5*(a + b*Tan[e + f*x]^2)^
p)/(5*f*(1 + (b*Tan[e + f*x]^2)/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.0994013, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3670, 511, 510} \[ -\frac{\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac{b \tan ^2(e+f x)}{a}+1\right )^{-p} F_1\left (-\frac{5}{2};1,-p;-\frac{3}{2};-\tan ^2(e+f x),-\frac{b \tan ^2(e+f x)}{a}\right )}{5 f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

-(AppellF1[-5/2, 1, -p, -3/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/a)]*Cot[e + f*x]^5*(a + b*Tan[e + f*x]^2)^
p)/(5*f*(1 + (b*Tan[e + f*x]^2)/a)^p)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \cot ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b x^2\right )^p}{x^6 \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\left (\left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac{b \tan ^2(e+f x)}{a}\right )^{-p}\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{b x^2}{a}\right )^p}{x^6 \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{F_1\left (-\frac{5}{2};1,-p;-\frac{3}{2};-\tan ^2(e+f x),-\frac{b \tan ^2(e+f x)}{a}\right ) \cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac{b \tan ^2(e+f x)}{a}\right )^{-p}}{5 f}\\ \end{align*}

Mathematica [F]  time = 3.614, size = 0, normalized size = 0. \[ \int \cot ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Cot[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

Integrate[Cot[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p, x]

________________________________________________________________________________________

Maple [F]  time = 0.316, size = 0, normalized size = 0. \begin{align*} \int \left ( \cot \left ( fx+e \right ) \right ) ^{6} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x)

[Out]

int(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \cot \left (f x + e\right )^{6}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="fricas")

[Out]

integral((b*tan(f*x + e)^2 + a)^p*cot(f*x + e)^6, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**6*(a+b*tan(f*x+e)**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \cot \left (f x + e\right )^{6}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^p*cot(f*x + e)^6, x)